Semantic smoothing for text clustering
نویسندگان
چکیده
In this paper we present a new semantic smoothing vector space kernel (S-VSM) for text documents clustering. In the suggested approach semantic relatedness between words is used to smooth the similarity and the representation of text documents. The basic hypothesis examined is that considering semantic relatedness between two text documents may improve the performance of the text document clustering task. For our experimental evaluation we analyze the performance of several semantic relatedness measures when embedded in the proposed (S-VSM) and present results with respect to different experimental conditions, such as: (i) the datasets used, (ii) the underlying knowledge sources of the utilized measures, and (iii) the clustering algorithms employed. To the best of our knowledge, the current study is the first to systematically compare, analyze and evaluate the impact of semantic smoothing in text clustering based on ‘wisdom of linguists’, e.g., WordNets, ‘wisdom of crowds’, e.g., Wikipedia, and ‘wisdom of corpora’, e.g., large text corpora represented with the traditional Bag of Words (BoW) model. Three semantic relatedness measures for text are considered; two knowledge-based (Omiotis [1] that usesWordNet, andWLM [2] that uses Wikipedia), and one corpus-based (PMI [3] trained on a semantically tagged SemCor version). For the comparison of different experimental conditions we use the BCubed F-Measure evaluation metric which satisfies all formal constraints of good quality cluster. The experimental results show that the clustering performance based on the S-VSM is better compared to the traditional VSM model and compares favorably against the standard GVSM kernel which uses word co-occurrences to compute the latent similarities between document terms. 2013 Elsevier B.V. All rights reserved.
منابع مشابه
A Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملClustering Massive Text Data Streams by Semantic Smoothing Model
Clustering text data streams is an important issue in data mining community and has a number of applications such as news group filtering, text crawling, document organization and topic detection and tracing etc. However, most methods are similarity-based approaches and use the TF*IDF scheme to represent the semantics of text data and often lead to poor clustering quality. In this paper, we fir...
متن کاملA Dynamic and Semantically-Aware Technique for Document Clustering in Biomedical Literature
As an unsupervised learning process, document clustering has been used to improve information retrieval performance by grouping similar documents and to help text mining approaches by providing a high-quality input for them. In this paper, the authors propose a novel hybrid clustering technique that incorporates semantic smoothing of document models into a neural network framework. Recently, it...
متن کاملSemantics-based Language Models for Information Retrieval and Text Mining
Semantics-based Language Models for Information Retrieval and Text Mining Xiaohua Zhou Xiaohua Hu The language modeling approach centers on the issue of estimating an accurate model by choosing appropriate language models as well as smoothing techniques. In the thesis, we propose a novel context-sensitive semantic smoothing method referred to as a topic signature language model. It extracts exp...
متن کاملDocument Clustering in Biomedical literature
As an unsupervised learning process, document clustering has been used to improve information retrieval performance by grouping similar documents and to help text mining approaches by providing a high-quality input for them. In this article, the authors propose a novel hybrid clustering technique that incorporates semantic smoothing of document models into a neural network framework. Recently, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 54 شماره
صفحات -
تاریخ انتشار 2013